セミナー 印刷

【Live配信(Zoom使用)限定セミナー】

プラズマ生成の基礎とプラズマCVD(化学気相堆積)による
高品質成膜プロセスのノウハウ

~プラズマCVDによって高品質膜を得ようとした際の意思決定に関わる物理的・化学的なメカニズム~

本セミナーは、Zoomによる【Live配信受講】のみです。会場開催はございません。
※詳細につきましては下記「オンライン配信」の項目をご確認ください。
★ 高品質膜を得ようとした際の、物理的・化学的なメカニズムを理解していただきます。
★ 高品質なプラズマCVD膜を得るために、プラズマ源の選定、装置設定、現象を徹底理解!
★ ハイバリア成膜、親水・撥水、ディスプレイ、集積回路などの応用へ! スパッタでは出来ない高品質成膜へ。
日時 2020年9月28日(月)  10:30~16:30
会場 Live配信セミナー(リアルタイム配信) ※会社・自宅にいながら学習可能です※  
会場地図
講師 大阪市立大学 大学院工学研究科 教授 白藤 立 氏
【経歴・研究内容・専門】
1991年 京都工芸繊維大学 助手
2001年 京都大学 助教授(2007年より准教授)
2009年 名古屋大学 特任教授を経て、2010年より大阪市立大学 教授
プラズマを用いた材料プロセシングに関する研究に従事。
近年は、大気圧プラズマや液体が関与するプラズマの研究を行っている。
【講師WebSite】
http://t-shirafuji.jp/
受講料(税込)
各種割引特典
49,500円 ( S&T会員受講料 46,970円 ) S&T会員登録について
定価:本体45,000円+税4,500円
会員:本体42,700円+税4,270円
S&T会員なら、2名同時申込みで1名分無料 1名分無料適用条件
2名で49,500円 (2名ともS&T会員登録必須​/1名あたり定価半額24,750円)
テレワーク応援キャンペーン(1名受講)【Live配信/WEBセミナー受講限定】
1名申込みの場合:受講料( 定価:35,200円/S&T会員 33,440円 )

35,200円 ( S&T会員受講料 33,440円 ) 
 定価:本体32,000円+税3,200円
 会員:本体30,400円+税3,040円
1名様でLive配信/WEBセミナーを受講する場合、上記特別価格になります。
※お申込みフォームで【テレワーク応援キャンペーン】を選択のうえお申込みください。
※他の割引は併用できません。
配布資料PDFテキスト(印刷可)
※PDFデータは、マイページよりダウンロードしていただくか、E-Mailで送付いたします。
(開催2日前を目安にダウンロード可、または送付)
オンライン配信【Live配信(Zoom使用)セミナー】
 ・本セミナーはビデオ会議ツール「Zoom」を使ったLive配信セミナーとなります。
 ・お申込み受理のご連絡メールに接続テスト用のURL、ミーティングID​、パスワードが記されております。
 「Zoom」のインストールができるか、接続できるか等をご確認下さい。

 ・セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
 ・開催日時にリアルタイムで講師へのご質問も可能です。
 ・タブレットやスマートフォンでも視聴できます
備考※資料付(マイページからPDFダウンロード)
※講義中の録音・撮影はご遠慮ください。

セミナー趣旨

 産業界で高品質なプラズマCVD膜の得るための仕事に従事する方々は、プラズマ源の選定から装置パラメータの設定に至る意思決定をする立場にあると思います。この意思決定を適切に行うためには、各種のプラズマ源の特徴を把握しておく必要があります。
 また、そのプラズマ源を用いたリアクター内で起こる物理・化学的現象が、各種パラメータを変えるとどうなるのか、更にそれが膜質にどのように反映されるのかを把握しておく必要があります。
 本講座では、プラズマCVDによって高品質膜を得ようとした際の意思決定に関わる物理的・化学的なメカニズムを理解して頂くことを趣旨としました。

セミナー講演内容

<得られる知識、技術>
 目的に応じたプラズマ源の選定指針を会得して頂くとともに、そのプラズマ源を用いたときに、ガス流量、圧力、投入電力、基板温度などの操作パラメータを増減させるということが、成膜プロセスに対して何をしていることを意味するのかを理解する。

<プログラム>
1.なぜプラズマCVD?
 1.1 ドライだから
 1.2 低温だから
 1.3 段差被覆性に優れるから
 1.4 機能性官能基を含有できるから
 1.5 非平衡だから

2.プラズマと気体放電の基礎
 2.1 プラズマの温度

   (低温大気圧プラズマはどうしてできるのか?)
 2.2 壁との境界「シース」
   (プロセスでは表面近傍の理解が大切!)
 2.3 放電によるプラズマ生成の基礎(Townsendの放電理論とPaschenの法則)
   (そもそも放電しないと話にならないが,放電しやすい/しにくいは何で決まる?)

3.各種プラズマ生成方式(プラズマ源)
 3.1 直流放電プラズマ

   (応用範囲は狭いが,まずはこれで基本原理を理解!)
   (プラズマ中の電位構造を理解することで,イオン衝撃の制御法がわかる)
 2.2 高周波放電プラズマ
   (電極を向かい合わせたらよい?ちがいます!電極非対象とコンデンサが重要!)
 2.3 高密度プラズマ源は何故高密度か?
   (電子の直進か回転かが密度の決め手!)

4.プラズマ化学工学
 4.1 制御パラメータと内部パラメータ

   (操作できるのは何か、実際には何が変わるのか?)
 4.2 プラズマ中の電子のエネルギー分布
   (電子のエネルギーは数十eVまで拡がる!)
 4.3 電子衝突により一次反応
   (電子衝突解離で何ができるのか? それは制御可能なのか?)
 3.4 二次反応とその影響
   (電子衝突解離で何が生成されるかが関係無い、ということもある!)
 3.5 気相から表面までの輸送過程
   (通常は拡散だが、イオンのドリフトを使うとイオン衝撃効果を援用できる)

5.薄膜堆積プロセスの理解と応用技術
 5.1 表面プロセスの概要

   (まずは,「膜形成の前駆体が降ってきて,それが付着する」という単純な視点から)
 5.2 膜構造形成過程の基本的描像
   (前駆体が持つエネルギーの大小で着地後の振る舞いが変わり,膜構造が変わる)
 5.3 膜の構造と電子材料としての物性
   (欠陥とは何か? 何故形成されるのか?)
 5.4 膜構造形成過程と膜物性
   (最も良く理解されているa-Si:HのプラズマCVDの描像を例にとって)
   (欠陥を減らすには何を操作するとよい?)
 5.5 成膜速度と基板温度
   (成膜速度の向上のためには,基板温度は高くする?それとも低くする?)
 5.6 イオン衝撃の効能
   (制御によって毒にも薬にもなる)
 5.7 機能基の含有
   (電子エネルギー分布の制御と二次反応の賜物)

  □質疑応答□