セミナー 印刷

高分子材料における結晶化プロセスの基礎、
構造形成とその制御および構造解析技術

~高分子結晶の構造と結晶化プロセスの特徴~
~物性と分子構造の規則性、温度条件、配向条件との関係と影響~
~簡易・迅速な各種構造解析手法と目的に応じた使い分け~

より優れた物性発現、更なる高機能化を図る為の結晶構造のコントロール

分子構造の規則性、温度条件、配向条件が最終的にどのような構造形成につながるのかか

目的に応じた高分子結晶構造を解析する各種手法
日時 2019年9月24日(火)  10:30~16:30
会場 東京・品川区大井町 きゅりあん  4F 研修室
会場地図
受講料(税込)
各種割引特典
48,600円 ( S&T会員受講料 46,170円 ) S&T会員登録について
定価:本体45,000円+税3,600円
会員:本体42,750円+税3,420円
S&T会員なら、2名同時申込みで1名分無料 1名分無料適用条件
2名で48,600円 (2名ともS&T会員登録必須​/1名あたり定価半額24,300円) 
備考※資料・昼食付
※講義中の録音・撮影はご遠慮ください。
※講義中のパソコン使用はキーボードの打音などでご遠慮いただく場合がございます。
得られる知識高分子が長い紐状である事に起因する、結晶化挙動の特異性について深く理解することができる。
簡易かつ迅速な光学顕微鏡法から最新の放射光解析技術まで、幅広く紹介するので、目的に応じた手法の使い分けが出来るようになる。
対象・新しく高分子結晶を取り扱うエンジニア
・高分子結晶の構造解析に新しく携わるエンジニア
・高分子結晶の関係する測定データの解釈にお困りの方
・高分子結晶の解析方法にお困りの方
キーワード:階層構造,電子顕微鏡,X線回折

セミナー講師

京都大学 化学研究所 高分子制御合成研究領域 准教授 博士(工学) 登阪 雅聡 氏
【講師紹介】

セミナー趣旨

 結晶性高分子材料の物性は、結晶が織りなすナノからミクロンスケールの階層的な構造により大きく左右される。こうした結晶構造のコントロールは、より優れた物性の発現や、更なる高機能化を図る為に必須である。従って、様々なスケールで結晶の構造を解析すると共に、そうした構造が形成される機構を正しく理解する必要がある。高分子は長い紐状である事に起因して、特異な結晶化挙動を示す。
 本講座では先ず、低分子や金属と対比しながら、高分子結晶の構造と結晶化プロセスの特徴について解説する。さらに、物性との関わりが深い項目として、分子構造の規則性、温度条件、配向条件などを取り上げ、最終的にどのような構造形成につながるか、実例を交えながら紹介する。
 引き続き、高分子結晶の階層的な構造を解析する手法として、顕微鏡法、および、回折・散乱による解析法について解説する。目的に応じて適切に使い分る事を念頭に、簡易かつ迅速な光学顕微鏡法から最新の放射光を用いた手法まで、幅広く紹介する。
 講演の最後には高分子の結晶化メカニズムの解析の方法、新規解析技術についての質問を受け付ける。

セミナー講演内容

1.高分子結晶及び結晶化プロセスの基礎とその制御
 1.1 「結晶」とは何か
  1.1.1 「結晶」の定義
  1.1.2 結晶はなぜ生成するか
 1.2 高分子結晶の構造的特徴
  1.2.1 低分子結晶との対比
  1.2.2 線状高分子の凝集構造
  1.2.3 高分子結晶特有の高次構造(ラメラ晶、球晶、繊維構造)
 1.3 高分子結晶の生成プロセス
  1.3.1 結晶核の形成
  1.3.2 二次核生成→生長
  1.3.3 結晶化速度
  1.3.4 結晶化温度と融点
 1.4 物性との関わりとその制御・評価法
  1.4.1 結晶化度の評価法
  1.4.2 融点の評価法
  1.4.3 分子構造の規則性(融点への影響、結晶成長への影響)
  1.4.4 配向(結晶化と物性への影響)
  1.4.5 分子量(結晶化、機械的物性、成形性への影響)
  1.4.6 球晶サイズ(機械的物性と透明性への影響)
 1.5 高分子結晶化の特性を活用した加工技術の例
  1.5.1 ゲル紡糸
  1.5.2 ナノ配向結晶体(NOC)

2.構造解析法1-顕微鏡法
 2.1 「見える」ための必要条件
  2.1.1 分解能(波長による限界、結像による限界、試料による限界)
  2.1.2 コントラスト(明暗、色)
 2.2 光学顕微鏡
  2.2.1 照明法について(透過、落射)
  2.2.2 対物レンズ
  2.2.3 偏光顕微鏡
  2.2.4 微分干渉顕微鏡
 2.3 電子顕微鏡
  2.3.1 走査型電子顕微鏡
  2.3.2 透過型電子顕微鏡(明視野像観察、電子回折、暗視野観察、三次元像)
 2.4 原子間力顕微鏡
  2.4.1 AFMの原理
  2.4.2 測定上の留意点(試料作成、フィードバックパラメータ)

3.構造解析法2-回折・散乱による方法
 3.1 回折・散乱の基礎
  3.1.1 ブラッグ回折
  3.1.2 フーリエ変換
  3.1.3 逆空間
 3.2 結晶の回折
  3.2.1 逆格子(回折反射の指数、エヴァルト球、限界球)
  3.2.2 乱れた結晶からの回折(回折点の広がりの解釈)
  3.2.3 多結晶体の回折(粉末図形、繊維図形)
  3.2.4 微結晶サイズの評価(シェラーの式)
  3.2.5 データ処理の実例
  3.2.6 電子回折
 3.3 小角散乱
  3.3.1 積層ラメラの回折
  3.3.2 インバリアント
 3.4 放射光を用いた解析の実例
  3.4.1 高速時分割測定
  3.4.2 マッピング

  □質疑応答□