ケーススタディを通して学ぶ

『自動化設備の装置開発と実用化』

基礎講座

第2章

焼結装置 開発プロセス

はるやま しゅうか

所長 : 春山 周夏

技術士: 機械部門

目次

第1章

目的・目標・現状把握 ~ゴールを決めよう~

- (1) 装置化の目的
- (2) 3つのメリットと2つの波及効果 (QCD/SE)
- (3) 現状把握とゴール設定
 - 1 自動化レベルチェック
 - ② 設備の信頼性設計

第2章

焼結装置 開発プロセス

- (1) ステップ① 言語化
- (2) ステップ② 数値化
- (3) ステップ③ フローチャート化

第3章

装置の要素と自動制御

- (1)機械要素
- (2) センサ要素
- (3) 自動制御
 - ① フィードフォワード/フィードバック/PID
 - ② シーケンス制御

第4章

生産現場管理 4つの指標

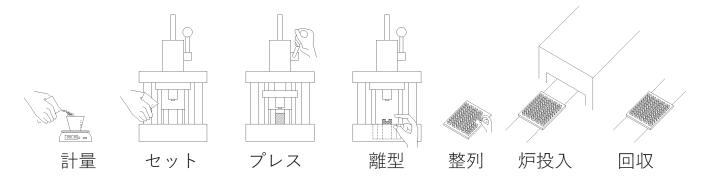
- (1) 生産実績
- (2) 生産能力
- (3) 品質
- (4) 保全

第5章

安全対策と装置の評価

- (1) リスクアセスメント
- (2) FMEA(Failure Mode Effect Analysis) 故障モード影響解析

第6章

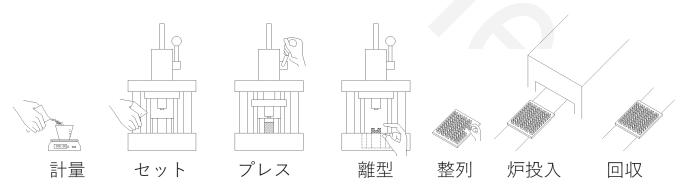

期待通りの装置をつくる7つのステップ

- ・ステップ① ゴールの確認
- ・ステップ② 機械に置き換える
- ・ステップ③ 動作フローチャートを作る
- ・ステップ④ 機械要素の確認
- ・ステップ⑤ 制御方式
- ・ステップ⑥ 4つの指標
- ・ステップ⑦ 安全性と信頼性の評価

(1) ステップ1 言語化

・装置を開発するにはまず作業を「言葉」と「図表」で表す

【例】焼結金属の試作プロセス


やっていること(やること)を書き出す

- ・材料を計量する
- ・プレス機にセット(金型に注入)する
- ・ハンドプレスで成形する
- ・型から外す
- ・パレットに整列する
- ・炉に投入する
- ・回収する

(2) ステップ 2 数値化

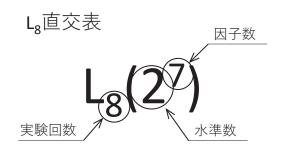
- ・制御すべき数値(パラメータ)とその基準値/閾値を決めていく
- ・外乱の影響を最小に抑える

【例】焼結金属の試作プロセス

パラメータ (制御因子)

計量条件	プレス条件	焼成条件
材料重量	プレス圧力, プレス速さ 保持時間など	予熱・加熱温度, 搬送速度・炉の長さ,整列状態など

外乱 (誤差因子)


材料ロット違いによる特性,各種誤差・ズレ,外気温・湿度など

7

(2) ステップ2 数値化

直交表

	因子(パラメータ)						
	因子1	因子2	因子3	因子4	因子5	因子6	因子7
水準1	Н	Н	Н	Н	Н	Н	Н
水準2	L	L	L	L	L	L	L
L ₈ (2 ⁷)	因子1	因子2	因子3	因子4	因子5	因子6	因子7
実験1	1	1	1	1	1	1	1
実験2	1	1	1	2	2	2	2
実験3	1	2	2	1	1	2	2
実験4	1	2	2	2	2	1	1
実験5	2	1	2	1	2	1	2
実験6	2	1	2	2	1	2	1
実験7	2	2	1	1	2	2	1
実験8	2	2	1	2	1	1	2

水準とは

各因子の設定値のこと 例えばHigh/Low値の影響 を調べたい場合水準が2つ ということになる。

パラメータ (制御因子)

計量条件	プレス条件	焼成条件
材料重量	プレス圧力, プレス速さ 保持時間など	予熱・加熱温度, 搬送速度・炉の長さ,整列状態など

外乱 (誤差因子)


材料ロット違いによる特性,各種誤差・ズレ,外気温・湿度など

(2) ステップ 2 数値化

直交表 27=128通り→8通り

	因子(パラメータ)							
	材料重量	プレス圧	保持時間	炉内温度	搬送速度	整列状態	材料特性	
水準1	Н	Н	Н	Н	Н	Н	Н	
水準 2	L	L	L	L	L	L	L	
$L_8(2^7)$	材料重量	プレス圧	保持時間	炉内温度	搬送速度	整列状態	材料特性	特性値μ
実験1	1	1	1	1	1	1	1	85
実験2	1	1	1	2	2	2	2	81
実験3	1	2	2	1	1	2	2	84
実験4	1	2	2	2	2	1	1	77
実験5	2	1	2	1	2	1	2	82
実験6	2	1	2	2	1	2	1	71
実験7	2	2	1	1	2	2	1	79
実験8	2	2	1	2	1	1	2	77

因子	水準	平均値
材料重量	1	81.75
们村里里	2	77.25
プレス圧	1	79.75
	2	79.25
保持時間	1	80.5
N/1/1 1/1 [1]	2	78.5
炉内温度	1	82.5
N. L.J.皿/文	2	76.5
搬送速度	1	79.25
	2	79.75
整列状態	1	80.25
正が小窓	2	78.75
材料特性	1	78
777747付注	2	81

要因効果図

(2) ステップ2 数値化

1

1

2

2

2

パラメータ設計

実験1 実験2

実験3

実験4

実験5

実験6

実験7

実験8

			因子	(パラメー	・タ)		
	因子1	因子2	因子3	因子4	因子5	因子6	因子7
水準1	Н	Н	Н	Н	Н	Н	Н
水準 2	L	L	L	L	L	L	L
L - (2 ⁷)	田子1	田子2	田子3	因子/	田子5	因子6	田子7

2

2

2

2

誤差	E因子例	: 平均粒径
N1	(最小)	70μm
N2	(最大)	90µm

特性値

_	1 रा	土川旦		
	N1	N2	平均	SN
	μ11	μ12	$\overline{\mu}$ 1	η1
	μ21	μ22	$\overline{\mu}$ 2	η2
	μ31	μ32	$\overline{\mu}$ 3	η3
	μ41	μ 42	$\overline{\mu}$ 4	η4
	μ51	μ 52	$\overline{\mu}$ 5	η5
	μ61	μ 62	$\overline{\mu}$ 6	η6
	μ71	μ72	$\overline{\mu}$ 7	η7
	μ81	μ82	$\overline{\mu}$ 8	η8

内側直交表 (制御因子)

1

1

2

2

1

2

2

1

2

2

1

2

2

2

1

1

外側直交表 結果の整理 (誤差因子)

実験1におけるSN比n1の計算

2

1

1

$$\begin{split} \eta 1 &= 10 \times log_{10}(\bar{\mu}1^2/\sigma 1^2) \\ \sigma 1^2 &= [\ (\mu 11 - \bar{\mu}1)^2 + (\mu 12 - \bar{\mu}1)^2]\ / N \end{split}$$

(2) ステップ 2 数値化

パラメータ設計

		因子(パラメータ)							
	材料重量	プレス圧	保持時間	炉内温度	搬送速度	整列状態	材料特性		
水準1	Н	Н	Н	Н	Н	Н	Н		
水準 2	L	L	L	L	L	L	L		

誤差因子例:平均粒径

N1(最小) 70μm N2(最大) 90μm

特性值

								13/-	- 11-		
L ₈ (2 ⁷)	材料重量	プレス圧	保持時間	炉内温度	搬送速度	整列状態	材料特性	N1	N2	平均	SN
実験1	1	1	1	1	1	1	1	85	84	84.5	44.6
実験2	1	1	1	2	2	2	2	81	85	83	32.4
実験3	1	2	2	1	1	2	2	83	82	82.5	44.3
実験4	1	2	2	2	2	1	1	78	80	79	38.0
実験5	2	1	2	1	2	1	2	82	81	81.5	44.2
実験6	2	1	2	2	1	2	1	78	79	78.5	43.9
実験7	2	2	1	1	2	2	1	77	72	77.5	43.8
実験8	2	2	1	2	1	1	2	77	78	77.5	43.8

$$\eta 2 = 10 \times \log_{10}(\overline{\mu}2^2/\sigma 2^2)$$

$$= 10 \times \log_{10}(83^2/4) = 32.4$$

$$\sigma 2^2 = [(81-83)^2 + (85-83)^2]/2 = 4$$

因子	水準	平均値		因子	水準	SN
材料重量	1	82.3		材料重量	1	39.8
们科里里	2	78.0		们科里里	2	40.4
プレス圧	1	81.9		プレス圧	1	41.3
ノレス圧	2	78.4		/ V / / /	2	38.9
保持時間	1	79.9		保持時間	1	37.6
体付时间	2	80.4		体付时间	2	42.6
炉内温度	1	80.8		炉内温度	1	40.7
N . L 1 /IIII /SC	2	79.5		が下り加及	2	39.5
搬送速度	1	80.8		搬送速度	1	44.2
IXAA 及	2	79.5		加及	2	36.0
整列状態	1	80.6		整列状態	1	42.6
正刀八咫	2	79.6	.6	2	37.5	
*******	1	79.1		材料特性	1	39.0
材料特性	2	81.1		仍你预注	2	41.2

(2) ステップ 2 数値化

パラメータ設計

因子	水準	平均値
材料重量	1	82.3
们们生里	2	78.0
プレス圧	1	81.9
ノレス圧	2	78.4
保持時間	1	79.9
本1441日	2	80.4
炉内温度	1	80.8
N T 1/III/S	2	79.5
搬送速度	1	80.8
JIX 丛丛及	2	79.5
整列状態	1	80.6
正川八忠	2	79.6
材料特性	1	79.1
77 741寸 1工	2	81.1

因子	水準	SN
,		
材料重量	1	39.8
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	40.4
プレス圧	1	41.3
ノレハ圧	2	38.9
保持時間	1	37.6
体付时间	2	42.6
炉内温度	1	40.7
	2	39.5
搬送速度	1	44.2
加及	2	36.0
整列状態	1	42.6
	2	37.5
材料特性	1	39.0
	2	41.2

・SN比が大きい方がバラツキが少ない。

ケーススタディを通して学ぶ

『自動化設備の装置開発と実用化』

基礎講座

第3章

装置の要素と自動制御

はるやま しゅうか

所長 : 春山 周夏

技術士: 機械部門

目次

第1章

目的・目標・現状把握 ~ゴールを決めよう~

- (1) 装置化の目的
- (2) 3つのメリットと2つの波及効果 (QCD/SE)
- (3) 現状把握とゴール設定
 - 1 自動化レベルチェック
 - ② 設備の信頼性設計

第2章

焼結装置 開発プロセス

- (1) ステップ① 言語化
- (2) ステップ② 数値化
- (3) ステップ③ フローチャート化

第3章

装置の要素と自動制御

- (1)機械要素
- (2) センサ要素
- (3) 自動制御
 - \bigcirc フィードフォワード/フィードバック/PID
 - ② シーケンス制御

第4章

生産現場管理 4つの指標

- (1) 生産実績
- (2) 生産能力
- (3) 品質
- (4) 保全

第5章

安全対策と装置の評価

- (1) リスクアセスメント
- (2) FMEA(Failure Mode Effect Analysis) 故障モード影響解析

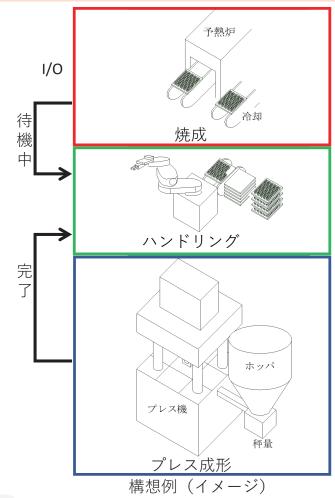
第6章

期待通りの装置をつくる7つのステップ

- ・ステップ① ゴールの確認
- ・ステップ② 機械に置き換える
- ・ステップ③ 動作フローチャートを作る
- ・ステップ④ 機械要素の確認
- ・ステップ⑤ 制御方式
- ・ステップ⑥ 4つの指標
- ・ステップ⑦ 安全性と信頼性の評価

はじめに 詳細の確認 全体像 → 一部抜粋 バッチ スタート 1 ワーク掴む アラーム1 ワーク搬送 ワーク整列 材料切出 NG リトライ 確認 OK _ パレット

エラー1


移動

炉内搬送

冷却搬送 (リターン)

回収

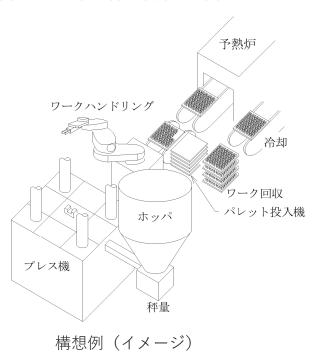
エンド

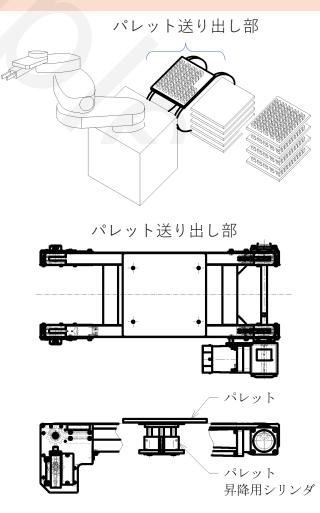
はじめに

材料

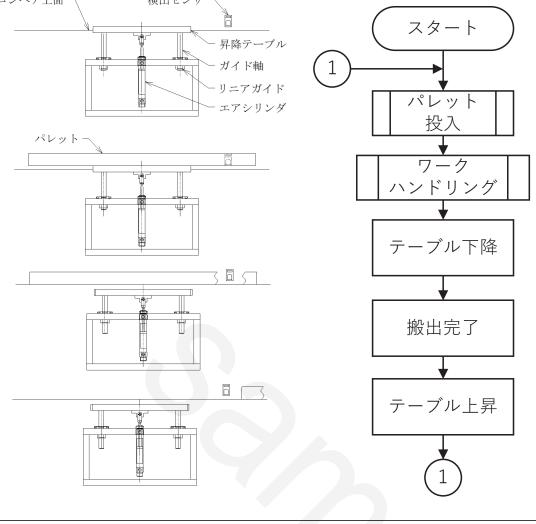
プレス下降1

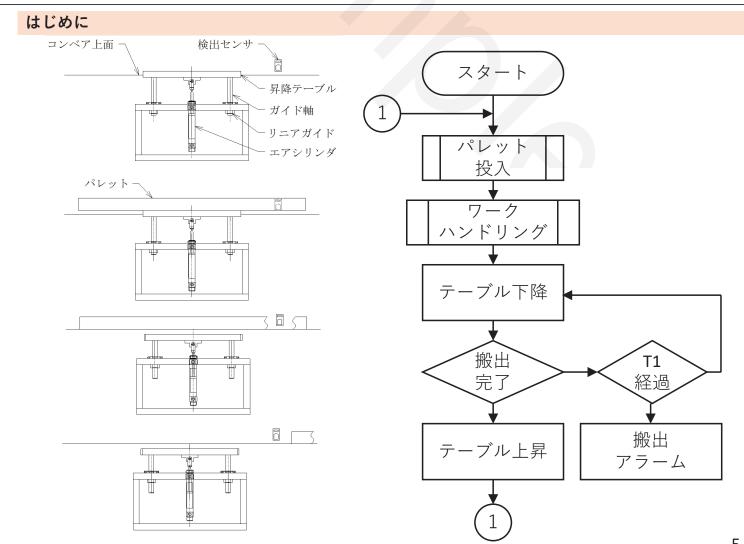
プレス下降2

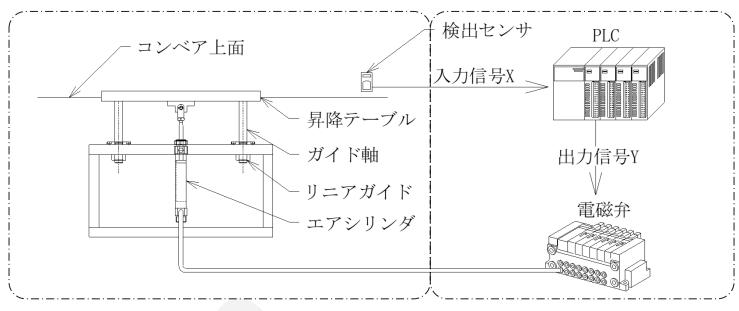

一時停止


プレス上昇

離型


1


全体像 → 一部抜粋 詳細の確認

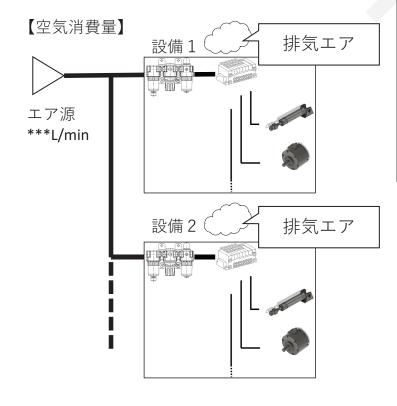

はじめに コンベア上面 検出センサ スタート 昇降テーブル 1 - ガイド軸 ーリニアガイド パレット エアシリンダ 投入 パレット-

はじめに

自動制御要素の全体像

装置に使用する機械要素ポイント

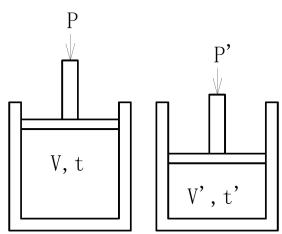
- 空気消費量
- ・要素の材料 → 油が塗布されている


オイルレス(黄銅系が多い) **Point!使用禁止材料の確認** 制御要素ポイント

- ・デジタルセンサ
- ・アナログセンサ
- •制御方式
- ・ラダーモニタ

6

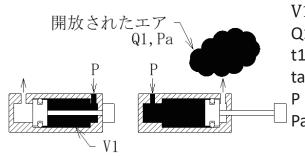
(1) 機械要素


空圧機器 シリンダー

空気消費量の計算 ボイル・シャルルの法則

$$\frac{V \times P}{t} = K \ (-\Xi)$$

V:体積 P:圧力 t:温度

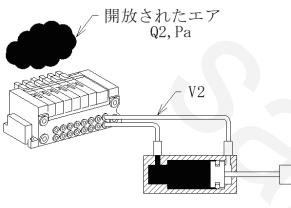


(1) 機械要素

空圧機器 シリンダー

【空気消費量】

参照標準大気ANR(温度20℃, 大気圧101.3 kPa=0.1 Mpa, 相対湿度65%)



 $\frac{\text{V1} \times (\text{P} + \text{Pa})}{273 + \text{t1}} = \frac{\text{Q1} \times \text{Pa}}{273 + \text{ta}}$:シリンダ容積 V1 :開放エア体積 Q1

:シリンダ内温度 t1

 $Q1 = \frac{V1 \times (P + Pa)}{Pa}$: 外気温 ta :ゲージ圧

: 大気圧

V2 :配管容積

 $\frac{\text{V2} \times \text{P}}{273 + \text{t2}} = \frac{\text{Q2} \times \text{Pa}}{273 + \text{ta}}$: 開放エア体積 Q2

 $Q2 = \frac{V2 \times P}{Pa}$

:配管内温度 t2

: 外気温 ta

:ゲージ圧

: 大気圧 Pa

演習4-4 工程能力指数計算と改善提案

以下の製造条件において、次の問いに答えよ。

(1) 全体の工程能力指数を計算せよ。

(2) ロット毎の工程能力指数を計算せよ。

(3) 設備の信頼度はCp2.0(6 σ , 0.002 ppm)である。(2)の解答から改善ポイントを挙げよ。

製造条件

ねじ締め機設計値2.0±0.2 N/m

上限値: 2.2N/m 下限値: 1.8N/m

1か月の生産3,000本のねじ締めのうち、材料ロットの切り替えが2回あった。

各ロットA, B, Cは1,000本のねじ締めを行った。 全ロット通して、設定値2.0 N/mでねじ締めを行った。

各ロットの初期100本からねじ締めトルクを抜き取り確認した結果、表①のとおりであった。

計算結果その1 平均値:1.939 標準偏差 σ :0.122

以下の欄を記入せよ。

①全体

①主体	1)全体		
N数	データ	偏差	偏差 ²
A1	1.87	0.069	0.005
A2	1.85	0.089	0.008
А3	1.84	0.099	0.010
B1	2.06	0.121	0.015
B2	2.01	0.071	0.005
В3	2.04	0.101	0.010
C1	2.16	0.221	0.049
C2	1.81	0.129	0.017
C3	1.81	0.129	0.017
Ave	1.939		0.01
σ	0.122		
ULS	2.2	LLS	1.8
Cpk (上限)	0.71		
Cpk (下限))	0.38	

②個別

I	N数	データ	偏差	偏差 ²
	A1	1.87	VHI ZZ	VHI /==
	A2	1.85		
	A3	1.84		
4	Ave	1.04		
	σ			
	O			
	ULS	2.2	LLS	1.8
	ULS	2.2	LLS	1.0
	O-1. (1 79)			
Cpk (上限)				
	Cpk(下限))		

N数	データ	偏差	偏差 ²
B1	2.06		
B2	2.01		
В3	2.04		
Ave			
σ			
ULS	2.2	LLS	1.8
Cpk (上限)			
Cpk (下限))		

N数	データ	偏差	偏差 ²
C1	2.16		
C2 C3	1.81		
	1.81		
Ave			
σ			
ULS	2.2	LLS	1.8
Cpk (上限)			
Cpk (下限)			

③改善のポイント記述